首页> 外文OA文献 >FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets
【2h】

FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets

机译:飞行:用于大规模RNAi表型数据集的整合和互相关的数据库和工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

FLIGHT () is a new database designed to help researchers browse and cross-correlate data from large-scale RNAi studies. To date, the majority of these functional genomic screens have been carried out using Drosophila cell lines. These RNAi screens follow 100 years of classical Drosophila genetics, but have already revealed their potential by ascribing an impressive number of functions to known and novel genes. This has in turn given rise to a pressing need for tools to simplify the analysis of the large amount of phenotypic information generated. FLIGHT aims to do this by providing users with a gene-centric view of screen results and by making it possible to cluster phenotypic data to identify genes with related functions. Additionally, FLIGHT provides microarray expression data for many of the Drosophila cell lines commonly used in RNAi screens. This, together with information about cell lines, protocols and dsRNA primer sequences, is intended to help researchers design their own cell-based screens. Finally, although the current focus of FLIGHT is Drosophila, the database has been designed to facilitate the comparison of functional data across species and to help researchers working with other systems navigate their way through the fly genome.
机译:FLIGHT()是一个旨在帮助研究人员浏览和交叉关联来自大型RNAi研究的数据的新数据库。迄今为止,大多数这些功能基因组筛选已使用果蝇细胞系进行。这些RNAi筛选遵循了100年的果蝇经典遗传学,但是已经通过将大量功能归功于已知和新颖基因而揭示了它们的潜力。反过来,这引起了对简化生成大量表型信息分析的工具的迫切需求。 FLIGHT旨在通过向用户提供以基因为中心的筛选结果视图以及通过聚类表型数据来鉴定具有相关功能的基因来实现此目的。此外,FLIGHT提供了许多常用于RNAi筛选的果蝇细胞系的微阵列表达数据。这以及有关细胞系,协议和dsRNA引物序列的信息,旨在帮助研究人员设计自己的基于细胞的屏幕。最后,尽管FLIGHT目前的重点是果蝇,但该数据库的设计目的是促进跨物种功能数据的比较,并帮助与其他系统一起工作的研究人员在果蝇基因组中导航。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号